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the High Luminosity LHC

higher luminosity
➔ 2.5 × ~ 4 ×

higher detector
readout rate

➔ 5 × ~ 7.5 ×
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we have a problem !

● higher pileup
● optimistic extrapolation: × 3

● new detectors
● based on MC: × 1.3

● higher L1 trigger rate
● design: × 7.5

● “Phase 2” HLT resource needs
● optimistically … × 30

● expected improvements in CPUs
● optimistic: × 4

● realistic: × 2
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looking ahead

● get production ready
● towards a possible deployment in Run 3

● integrate in the “oUcial” CMSSW releases
● CUDA-based framework

● pixel local reconstruction, track and vertices

● calorimeters’ local reconstruction

● full tracking

● investigate diTerent topologies
● and communication / oVoad models

● a new programming model
● GPU/CPU code sharing and reuse 

remote accelerator units ?

Blter units with accelerators ?

builder units
with accelerators ?
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Patatrack Pixel Reconstruction Workflow
• Full Pixel Track reconstruction in CMSSW

• from Raw data decoding to 
Primary Vertices determination

• Raw data for each event is transferred to 
the GPU initially (~250kB/event)

• At each step data can be transferred to CPU
and used to populate “legacy” event data

• The standard validation is fully supported
• Integer results are identical
• Small differences in the results of  floating point 

can be explained by differences in re-association
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Doublets
• The local reconstruction produces hits

• Doublets are created opening a window depending on the tracking region/beamspot and layer-pair

• The cluster size along the beamline can be required to exceed a minimum value for barrel hits connecting to an endcap layer
• Hits within the bins are connected to form doublets if  they pass further “alignment cuts” based on their actual 

position

• In the barrel the compatibility of  the cluster size along the beamline between the two hits can be required

• The cuts above reduce the number of  doublets by an order of  magnitude and the combinatorics by a factor 50
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Cellular Automaton-based Hit Chain-Maker

The CA is a track seeding algorithm designed for 
parallel architectures
It requires a list of  layers and their pairings

• A graph of  all the possible connections between 
layers is created

• Doublets aka Cells are created for each pair of  layers, in parallel at the same time
• Fast computation of  the compatibility between two connected cells, in parallel
• No knowledge of  the world outside adjacent neighboring cells required, making it easy to 

parallelize
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• Better efficiency and fake 
rejection wrt previous algo

• Since 2017 data-taking has 
become the default track 
seeding algorithm for all the 
pixel-seeded online and 
offline iterations

• In the following, at least four hits are required, but triplets can be kept to recover 
efficiency where geometric acceptance lacks one hit



CA compatibility cuts

• The compatibility between two cells is 
checked only if  they share one hit

• AB and BC share hit B
• In the R-z plane a requirement is 

alignment of  the two cells

• In the cross plane the compatibility 
with the beamspot region
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Fits
Pixel track “fit” at the HLT is still using 3 points for quadruplets and 
errors on parameters are loaded from a look-up table[eta][pT]

The Patatrack Pixel reconstruction includes two Multiple Scattering-
aware fits: 

• Riemann Fit 

• Broken Line Fit

They allow to better exploit information coming from our 4-layer 
pixel detector and improve parameter resolutions and fake rejection
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Performance Definitions
Physics performance:
• 20000 MC ttbar events <PU> = 50, design conditions, 25ns, sqrt(s)=13TeV
• Matching of  reconstructed tracks with simulated ones requires that all hits of  the 

reconstructed track come from the same simulated track
• Efficiency: number of  matched reconstructed tracks divided by number of  simulated tracks
• Fake Rate: number of  non-matched reconstructed tracks divided by number of  

reconstructed tracks
• Efficiency is computed only with respect to the hard scatter.
• Efficiency has the following implicit cut: |d0| < 3.5 cm additionally to the cuts quoted in 

the plots
• Duplicate is a reconstructed track matching to a simulated track that itself  is matched to   

>= 2 tracks
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Physics Performance - Efficiency

Track reconstruction efficiency as a function of  simulated track η,
pT, and production vertex radius.
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Physics performance - Duplicates

22
Track reconstruction duplicate rate as a function of  reconstructed 
tracks η, pT



Physics performance – Fakes
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Track reconstruction fake rate as a function of  reconstructed tracks η,
pT



Physics Performance – Fit Pulls
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σ - Reference σ - Broken Line σ - Riemann Fit

d0 0.84 1.32 1.18

dz 0.97 1.28 1.20



Physics Performance – Fit Pulls
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σ - Reference σ - Broken Line σ - Riemann Fit

qoverp 0.99 0.99 0.72

θ 1.29 1.33 1.22

φ 1.02 1.28 1.27



Physics Performance - Resolutions
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Track resolution of  the transverse impact parameter as a function of  
simulated track η and pT



Physics Performance - Resolutions

Track resolution of  the longitudinal impact parameter as a function 
of  simulated track η and pT
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Physics Performance - Resolutions

Track reconstruction resolution of  pT as a function of  simulated 
track η and pT
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Computational Performance
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Pixel reconstruction consumers can either work directly on the 
GPU or ask for a copy of  the tracks and vertices on the host



Computational Performance

Pixel reconstruction consumers can either work directly on the 
GPU or ask for a copy of  the tracks and vertices on the host
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http://trackreco.github.io/ !
http://computing.fnal.gov/hepreco-scidac4/  	

mkFit Project: Speeding up particle track 
reconstruction using a vectorized and 
parallelized Kalman Filter algorithm!

G. Cerati1, P. Elmer3, B. Gravelle5,!
M. Kortelainen1, S. Krutelyov4, S. Lantz2,!

M. Masciovecchio4, K. McDermott2, B. Norris5, 
A. Reinsvold Hall1, D. Riley2, M. Tadel4,              

P. Wittich2, F. Würthwein4, A. Yagil4 !
!

1. FNAL 2. Cornell 3. Princeton 4. UCSD 5. Oregon!
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Parallelized KF Tracking Project!
•  Ongoing project for 3+ years!
•  Mission: adapt traditional Kalman Filter (KF) tracking algorithms 

to maximize usage of vector units and multicore architectures!
–  Testing on Intel Xeon and Intel Xeon Phi !
–  Longer term: adapt algorithm for GPUs (not covered today)!

•  Achievements shown today: !
–  Effective use of vectorization and multi-thread scaling !
–  Physics performance comparable to offline CMS reconstruction!

•  Aim: Test algorithm online in Run 3 software-based High Level 
Trigger (HLT), extend to HL-LHC CMS geometry!
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See project website      
for details:

http://trackreco.github.io/	



Using the Kalman Filter !
Benefits of the Kalman Filter for 
track finding/fitting:!
•  Robust handling of multiple 

scattering, energy loss, and other 
material effects !

•  Widely used in HEP!
•  Demonstrated physics 

performance!
!
Two step process: !
1.  Propagate the track state from 

layer N-1 to layer N (prediction) !
2.  Update the state using the 

detector hit (measurement) on 
layer N!
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Predicted track state !
Detector measurement !
Updated track state!



Track building in a nutshell!
•  Start with a seed track !
•  Propagate track state to the next 

detector layer !
•  Find detector hits near projected 

intersection of track with layer!
–  Problem of combinatorics: could 

find 0 hits, 1 hit, or several hits !
•  Select best fit track-hit combinations 

as track candidates !
–  Update estimated state of all track 

candidates with new hit!
–  At each layer, the number of possible 

track candidates per seed increases!
•  Iterate!

A. Hall! Connecting the Dots 2019! 9!



Parallelization and Vectorization!
•  Task scheduling is handled via TBB library from Intel!
•  Parallelization at multiple levels!

-  parallel for: N events in flight!
- parallel for: 5 regions in η in each event!

- parallel for: seed-driven batching, 16 or 32 seeds per 
batch!

•  Vectorized processing of individual track candidates where 
possible!
–  Using both compiler vectorization and the Matriplex library !
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Matriplex Library!
•  Custom library for vectorization of small matrix operations !
•  “Matrix-major” representation designed to fill a vector unit with n 

small matrices and operate on each matrix in sync !
•  Includes code generator to generate C++ code or intrinsics for 

matrix multiplication of a given dimension !
–  Can be told about known 0 and 1 elements matrices to reduce 

number of operations by up to 40%!
•  Used for all Kalman filter related operations !
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CMS Iterative Tracking!
•  To reduce combinatorics, CMS 

performs track finding over 
several iterations!
–  Start with tracks that are easiest 

to find, end with the most 
difficult tracks!

–  Between each iteration remove 
hits that have been associated to 
a track!

•  mkFit focuses on initial iteration:!
–  Seed tracks with 4 hits and no 

beam-spot constraint!
–  Find most prompt tracks!

•  Could easily be extended to 
include other iterations!
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Efficiency of mkFit!
•  Shown here: algorithm-level efficiency for long (� 12 hit) tracks!
•  mkFit is at least as efficient as CMSSW, even for low pT tracks!

–  Crucial for accurate particle flow reconstruction!
•  Much of the effort in the last year has focused on achieving this 

important milestone!
•  Next steps: improve efficiency for short tracks. Development for this 

is already in progress!
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CMSSW!
!

MkFit!
TTBar PU 70!



Speedup vs # of Threads!
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•  Results for track building only; does not include overhead!
•  Measured using standalone configuration, single event in flight!
•  Turbo boost disabled!

Number of Threads!

Intel Xeon!
 Skylake SKL (Gold 6130)!

Intel Xeon Phi !
Knight’s Landing KNL (7210)!

Excellent scaling at low threads – 
independent of exact architecture!
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Speedup vs size of vector units!
Algorithm uses vectorization successfully-     
60 - 70% of code is vectorized!!
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Intel Xeon SKL!

•  Results for track building only; does not include overhead!
•  Measured using standalone configuration, single event in flight!

Matriplex Vector Width (floats)!
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Speedup vs # of events in flight!
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Intel Xeon SKL!

Number of threads!

Can get speedups up to x25 using 
multiple events in flight!
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•  Results include time for full loop, including I/O, handling the seeds, etc !
•  Measured using standalone configuration!
•  Previous plots used only a single event in flight!



Integrated Timing Performance!
Technical Details!
•  Run mkFit within CMSSW!
•  mkFit used for building only!
•  Single-thread test using TTBar PU 50 !
Results!
•  Track building is 4.3x faster!
•  40% of time is spent in data format 

conversions – actual track finding is 
7x faster !

•  Track building now takes less time 
than track fitting !

•  Even larger speedup if multiple 
threads are used!
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CMSSW!
!

MkFit!

* Measured on SKL, mkFit 
compiled with AVX-512 !


